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Abstract

Google search is ubiquitous, and Google Trends (GT) a potentially useful access point for big

data on many topics the world over. We propose a new ‘variance-in-time’ method for forecasting

events using Google Trends (GT). By collecting multiple and overlapping samples of GT data

over time, our algorithm leverages variation both in the mean and the variance of a search term in

order to accommodate some idiosyncracies in the GT platform. To elucidate our approach, we use

it to forecast protests in the United States. We use data from the Crowd Counting Consortium

between 2017 and 2019 to build a sample of true protest events as well as a synthetic control

group where no protests occurred. The model’s out-of-sample forecasts predict protests with

higher accuracy than extant work using structural predictors, high frequency event data, or other

sources of big data such as Twitter. Our results provide new insights into work specifically on

political protests, while providing a general approach to GT that should be useful to researchers

of many important, if rare, phenomenon.



1 Introduction

The big data revolution has brought the social sciences enormous opportunities. A growing body of

work uses data from Twitter (Barberá, 2015; Barberá et al., 2015; Bahrami et al., 2018; Timoneda,

2018), large bodies of text (Aletras et al., 2016; Muthiah et al., 2015), and satellite imagery to

study everything from terrorist funding to neighborhood demographics (Do et al., 2018; Min, 2015;

Gebru et al., 2017). One rich source of big data that political scientists have under-appreciated,

however, is Google Trends (GT). GT is a service provided by Google that analyzes the popularity

of a search query over a given time period and geographical area. Since Google search is ubiquitous,

capturing more than 90 percent of the search market in the vast majority of countries, GT is built

on a huge amount of data that could help researchers. Indeed, it has proved useful in detecting

upsurges in everything from retail sales to international travel (Choi and Varian, 2012). Despite its

capacity to provide high-frequency data on everything from protests to political identities, GT has

been deployed sparingly by political scientists. And while some have adopted techniques to generate

topic-specific predictions using GT (Mavragani and Tsagarakis, 2016) and others have used creative

search terms to analyze hard-to-survey populations (Chykina and Crabtree, 2018), their approaches

are hard to generalize to other topics of interest.

In this article we set out to: first, provide clarity around generating, accessing and processing GT

data for event detection; and second, show the utility of the approach by using GT to both detect

protest events ex-post and predict events ex-ante. On point one, we emphasize the importance of

understanding GT’s indexing of searches for its application to any particular analytical question.

Given GT’s approach, any single search on the volume of a term such as ’protest’ or ’police violence’

can yield deeply misleading results–this is true whenever search terms are relatively rare. Thus,

we emphasize the importance of variation within a given search query across time rather than

comparisons to other search terms or to Google’s overall volume. We propose a ‘variance-in-time’
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method that smooths GT scores over time and incorporates variance in interest into attempts to

identify events. The intuition is that more consistent interest in an event may help us predict it as

well or better than the mean GT score.

Second, we deploy our approach to detect and forecast protests, a rare but politically important

event type that has solicited a substantial body of academic attention. We first illustrate our

approach using the search term ‘protest’ during the lead up to the Baltimore protests of April

2015 surrounding the death of Freddie Gray at the hands of police. We show that the coefficient

of variation in hourly GT searches for ‘protest’ in the Baltimore metro area over a period of two

months does an excellent job of detecting and predicting the events of the 25th of April, the day

of the riots. We then test the efficacy of our approach by relying on known protest events in the

United States from the Crowd Counting Consortium (CCC) data.1 We collect GT data for 130

known protest events and for a set of 133 synthetic controls when no protest occurred. We collect

repeated samples of weekly data at the hourly level for a period of 3 month for each event in

the dataset, yielding a total of 3.6 million data points. We then use machine learning to produce

out-of-sample forecasts. Our approach is more accurate than standard approaches in the protest

literature, including those that rely on other sources of big data, like Twitter.

In doing so, this article makes several contributions. First, it provides a better understanding of

how GT works, the nature of the data it produces, as well as its strengths and limitations. We hope

to make it easier for other researchers to deploy GT for their own purposes. Second, we contribute

to efforts to detect and forecast bouts of protest, instability and crisis events (Bowlsby et al.,

2019). We show that GT can usefully detect protests – even modest sized ones – at higher levels of

temporal and spatial resolution than other, more traditional, data sources. Our ‘variance-in-time’

method is hourly and leverages regional and city-level data. The method smooths GT scores over

1See https://sites.google.com/view/crowdcountingconsortium/home?authuser=0 for the data.
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time and incorporates variance in interest into the final forecast, increasing accuracy. Ultimately,

these benefits are not simply empirical as such data forces researchers to think theoretically about

causal processes at finer grain than common, quite structural analytical approaches. Third, and

despite the limitations inherent in GT, we show that it has considerable potential for predicting

rare events. Thus, GT can provide a means for evaluating out-of-sample model performance even

as it offers promise as a tool for policymakers and researchers interested in promoting, preventing,

or responding to events in the world.

2 Google Trends in Academic Research

GT has become popular in academic research in recent years. It was initially used in the late 2000s

as a tool to analyze trends and monitor the evolution of diseases, viruses, or financial markets. Over

time, the focus of research has shifted to forecasting (Jun et al., 2018). Pelat et al. (2009) track the

evolution of the flu and diarrhea, while Carneiro and Mylonakis (2009) use GT to monitor disease

outbreaks in real-time. Vosen and Schmidt (2011) build a new indicator of private consumption

based on data from GT. Examples of forecasting include Preis et al. (2013), who try to find ‘early

warning signs’ for stock market moves through changes in google search volumes, Teng et al. (2017)

dynamic model to forecast Zika epidemics, and Zhang et al. (2018)’s forecast of seasonal infections.2

Lazer et al. (2014), on the other hand, show the limitations of using GT to predict flu virus outbreaks.

In political science, we know of two noteworthy applications. First, Mavragani and Tsagarakis

(2016) use GT to predict referenda outcomes in Europe from 2014-2017.3 The authors calculate the

share of ‘yes’ and ‘no’ searches (in each language) in the weeks leading up to the referendum and

show that the percentages closely match the final outcome. The manner in which they transform GT

2Oddly, the term ‘repression’ is seasonal in the United States, with searches lowest in July and August every year.
3These were Scotland’s Independence vote in 2014, the Greek anti-austerity referendum of 2015, the Brexit vote in
2016, Hungary’s 2016 migrant quota referendum, Matteo Renzi’s 2016 constitutional vote in Italy and the 2017
Turkish referendum.
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data into percentages for or against a referendum question is not clear, and the approach is limited to

dichotomous phenomena (such as yes/no votes). Nevertheless, the research shows the applicability

of GT data to crucial democratic processes. Second, Chykina and Crabtree (2018) measure issue

salience for populations that are very difficult to sample using traditional survey techniques. They

show how GT data can identify concerns by unauthorized immigrants about deportation from the

U.S. in the aftermath of proposed policy changes and Trump’s election by using the search term

“will i be deported”. With this method, they are able to identify key anti-immigration events:

the passage of Arizona’s SB1070 law, Trump’s election and inauguration, and the Muslim travel

ban imposed by the new President in early 2017. The authors also exploit GT’s geographic search

tool to show that a majority of searches came from states with large illegal immigrant populations:

California, Texas and New York.

This growing body of work has discussed many of the challenges inherent in GT’s data generation

process. First, Google search trends can be responsive to media trends rather than the underlying

phenomenon of interest (Lazer et al., 2014). Second, GT results can be sensitive to apparently

modest changes in search terms, and this is particularly stark when it comes to rare, but important,

events like protests. Third, the underlying Google search and GT algorithms are under constant

revision, and this can affect results. Despite these pitfalls, some extant work demonstrates the

potential of Google searches to predict human behavior, such as Brigo et al. (2014)’s study showing

that people search for epilepsy-related terms to aid initial self-diagnosis. Similarly, we suspect that

people interested in protesting use Google’s search engine to find information about where and when

to do so.
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3 How Google Trends Works

Any use of GT for research purposes requires careful consideration of how it is put together. It

ostensibly tells us how popular a given term was on Google’s main search engine for a specific time

frame and location. GT allows users to download data at the country, state, regional, metro area

and city levels. Metro area and city are only available in the US, while regional data are available

around the world in a country’s main first political subdivision. GT data is available from 2004

to the present. Users can specify the time frame (or window) for which they want to collect GT

data –a few hours, a day, a week, a few months or years. Time blocks, or the frequency over which

the data is analyzed across the time frame, can be hourly, daily, weekly, or monthly, depending

on the length of the time frame.4 For time frames of up to one week, GT reports hourly data;

for time frames of 9 months or less, daily data; for time frames between 9 months and 5 years,

weekly data; and for time frames greater than 5 years, monthly. Researchers can access GT data

in multiple ways, including R, Python and Google’s own Trends application programming interface

(API).5 Note that Google’s search engine dominates in most markets worldwide, with market shares

of 87.6% in the United States, 90% in Canada, and 97% in India, among others.6 Data from some

countries, most notably China, are not available due to internet restrictions.

To generate the GT data a user receives, Google first draws a random sample of all search traffic

4GT’s API returns hourly data if the search is of 8 days or less, daily data if the search is for over 8 days and under a
nine months, weekly data between nine months and five years, and monthly data for queries of over five years. Note
that this applies to non-realtime data (historical archive), a random sample for any query requiring data between
2004 and 36 hours prior to the search. GT also provides realtime data, which is a random sample of searches from
the last 7 days – time blocks are minutes for the most recent 4 hour period and hourly for the rest of the week. We
do not use realtime data for this article.

5In R, the gtrendsR package provides daily, weekly and monthly data –hourly data are not available. The package
returns different samples every 180 seconds. Python’s pytrends library is similar in nature to gtrendsR with two
important differences: (1) hourly data is available for any 7-day period in the historical archive. This is not against
Google’s terms of service. It is the company’s policy to produce hourly data for any search shorter than 1 week
in the historical archive. and (2) it maintains the same sample if accessed from the same IP address. The third
way to access trends data is through the Google Trends API, which researchers can access for free for academic
purposes. gtrendsR and pytrends are not officially sanctioned by Google but are commonly used in research. For
this article, we have obtained official access to Google’s API.

6Germany and Australia: 93%; France: 91%; Italy, Spain and Brazil: 95%; Korea: 85%; Japan: 70%. In terms of
continents, Google’s market share is 95% in Africa and Oceania and 92% in Europe, Asia and America.
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on its service for the requested location and time period. Google’s justifies producing results from

samples instead of all search data on efficiency grounds.7 This sampling process creates variability

in the results from multiple, identical requests to Google’s API. This variability is particularly severe

for low-volume search terms, which may not register in some of the sample draws. Thus, the same

GT search for the same place and hour can generate somewhat different results (Choi and Varian,

2012).

Second, from this sample, Google’s algorithm calculates the ‘share’ of overall traffic that the

term represents, but it does not make that data available.8 Instead, it transforms these ‘shares’ of

overall volume into a normalized index that ranges between 0 and 100.9 A score of 100 indicates the

time block when the search term was at its most popular during the time period under examination

– that is, when the search term achieved its greatest share of overall Google search traffic (Choi

and Varian, 2012). Thus, every search term will achieve a value of 100 at some point over the time

frame of the GT search. GT then indexes the rest of the time blocks over the entire time period

in reference to this highest point. If a time block has half of the highest hour’s volume, it receives

a score of 50; if another time block has 100 times lower volume or less, it receives a score of 0.

All other values within a time frame are indexed in relation to the highest value of 100, and thus

receive scores between 0 and 99, inclusive.10 Thus, the GT indexed score for a search term reflects

its popularity in relation to itself over the time frame in a given location.11

7Details on these samples are not published by Google. The company states on their website that “Google Trends
data is an unbiased sample of Google search data. Only a percentage of searches are used to compile Trends data.”
See https://support.google.com/trends/answer/4365533?hl=en.

8The only exception to this is the Health API, which produces the actual share of Google’s overall volume for a term
during a period of time. However, this API is for health research only.

9Data are normalized by total searches within geographical areas. As Google explains in the support page linked
above, “[e]ach data point is divided by the total searches of the geography and time range it represents to compare
relative popularity. Otherwise, places with the most search volume would always be ranked highest.”

10GT will multiply all other values by a given factor to scale them against the high point of 100. Say a given term was
5 percent of all Google traffic during a window (hour, day, etc) at its highest peak of popularity for a time frame.
This 5 percent is indexed as 100. Another value, say 2.5, is then multiplied by a factor of 20 (100/5), and receives
an indexed score of 50.

11To understand the term’s relative size, we can compare it to another search term in the same query. When two
terms are compared to each other, the time at which either was the most popular receives 100, and the rest are
indexed in relation to this one single peak.
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This indexing has three important implications for researchers. First, it makes GT a poor tool

for assessing a search term’s overall volume or popularity relative to other search terms. All search

terms obtain a score of 100 at some point during a given search period even if the term represents a

small share of overall search volume. Second, GT results can be very sensitive to the time frame over

which the index is constructed. A typically low-volume search term, such as ‘protest’, will always

generate a 100 score, even over time frames when protests are not salient. And those ‘100’ scores

are not easily distinguishable from ‘100’ scores that the term ‘protest’ would achieve during the

Arab Spring or the Freddie Gray riots in Baltimore. Thus, any single GT search can be deceptive

with regards to a term’s overall salience amongst Google searchers. Third and relatedly, while GT

indexing does require that even low-volume searches achieve a 100-point score over a time frame,

it does not necessarily assign the lowest volume time block for a search term a ‘0’. A search for

popular terms such as ‘Trump’ or ‘Gmail’, for instance, will not yield a 0 GT score in any time block.

Conversely, a search for a low-volume term will always yield a 100 score (assuming there is enough

data to produce a trend). An important implication is that high volume searches will have less

variance in GT scores than low volume searches on average, even when the underlying distribution

of raw searches have equal variance. This feature means that GT is particularly well-suited for

detecting rare events, such as protests, because exaggerated pre-event interest will be reflected in

reduced variation in GT scores. We exploit this feature below.

Figure 1 provides an example to elucidate these points; it plots the GT score of the word ‘protest’

in the Baltimore metro area between April 20 and 27, 2015, when violent protests shook the city in

the wake of Freddie Gray’s death at the hands of the police. In this example, we have hourly time

blocks over the time frame of April 21-27. Since the time blocks are hours, we have a total of 168

data points (24 hours for each of the 7 days) for the term ‘protest’ in Baltimore. The large spike

in interest the night of April 25 roughly coincides with the most violent episodes of the week – the
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Figure 1: Hourly GT scores for ‘protest’ (April 20-27, 2015 – Baltimore Metro Area).

Baltimore ‘uprising’ or ‘riots’. Interest was relatively low earlier in the week and picked up slightly

on April 23rd, the day of the first large, but nonviolent, protest.

Notice that the y-axis is bound between 0 and 100. As described above, this is a function of how

Google builds the GT index. First, GT assigns a value of 100 to the hour with the highest level of

search volume for ‘protest’ within the overall time frame. In this case, ‘protest’ was most googled

in Baltimore between 6 and 7pm Eastern on April 25. We cannot know ‘protest’s share in overall

Google search volume in Baltimore during that hour, but we know it was at its highest share of all

searches that week. Hence, GT assigns that one hour a score of 100. GT indexes the rest of the

hourly scores for the week in reference to this highest point. For instance, on April 23rd between

2 and 3pm – the first small peak of the week – searches for ‘protest’ represented one third of the

search volume of the week’s most popular hour (again, April 25 6-7pm).

This example also helps clarify why GT data is poor for assessing a search term’s overall pop-

ularity relative to all search terms. For rare search terms, an index of 100 is achieved even with

low absolute search volume. Imagine, for instance, that searches for ‘protest’ were 23 percent of all

search traffic on Google in Baltimore between 6 and 7pm on April 25, 2015. 23 percent is reflective

of an objectively popular search term across all Google searches, but that is not what GT reports.
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Because 23 percent is also the peak popularity of ‘protest’ searches over the April 21-27 period,

GT produces a score of 100 for April 25 between 6 and 7pm and all other time blocks are indexed

against it. However, some other objectively unpopular term – say ‘David Foster Wallace’ – could

also receive a score of 100 for April 25 between 6 and 7pm, even if it peaked at only 2 percent of

total search, as long as that hour was when ‘David Foster Wallace’ was most searched over the time

period.12

Figure 2, on the other hand, shows how GT indexing makes any single GT search very sensitive

to the time frame of analysis, and thus, potentially deceptive. The figure shows hourly output on

GT for the weeks of April 13 to 21 (a), April 17 to 24 (b), April 20 to 27 (c) and all of 2015 in the

Baltimore metro area for the search term ‘protest’. Plot (a), like the others, has one peak of 100 on

April 17, but the variation is high across the period. Two other peaks are close to the 100 mark on

early April 13 and late April 20. Notice that the peak from (a) disappears in (b), as April 17 search

volume now pales in comparison to the peak of April 24. Variation is much lower, indicating that

the surge of April 24 could potentially constitute an event. However, as shown in (c), that peak

itself is much smaller than the one on April 25 at night (7pm EST), the day of the riots. Thus, one

snapshot of GT data will always produce a high point of 100, but whether that peak is constitutive

of an important event is difficult to tell from any single capture. This indexing adds a layer of

difficulty in utilizing GT data. Our approach, described below, exploits variance in a search term’s

own trend to circumvent the limitations inherent in one-off GT results.13

12The DFW 100-point GT peak is actually on April 24 for that week. The GT ‘compare’ option, which allows one
to compare two search terms, on the other hand, shows that the overall volume of searches for ‘protest’ was much
higher than ‘David Foster Wallace’ across the whole week.

13A way to conceive of this is as a ‘fixed-effect’, where we analyze within-term variation rather than contrast differences
across terms or solely in relation to overall search volume.
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Figure 2: Hourly GT scores for 1protest’ over three different search periods (April 2015, Baltimore
Metro).

4 Event Detection and Forecasting

Potentially one of the most promising applications of GT for the purposes of political scientists

involve ‘event’ detection and prediction. An event is an instance of a given phenomenon that

takes place in a specific location for a finite period of time. In the event detection and prediction

literature, researchers typically code events as involving an initiator (which could be anything from
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a person to the police to a country), a target (ditto), a magnitude and a location (Schrodt and

Gerner, 1994; Gerner et al., 1994; King and Lowe, 2003). There are large machine learning projects,

including GDELT (Leetaru and Schrodt, 2013) and ICEWS (Boschee et al., 2015), that aim to

turn the world’s news into event data on everything from international conflict to mentions of

specific world leaders. Other approaches rely on human coding of news and qualitative research to

detect everything from protests (Fisher et al., 2019) to insurgent attacks (Raleigh et al., 2010) to

international crises (Brecher et al., 2016). Event data has been used to model an enormous range

of outcomes in the social sciences. Given Google search’s ubiquity around the world, we believe it

offers some important advantages for event detection and prediction.

Most importantly, GT can overcome some important challenges and limitations in current

sources for event data. First, GT can improve on the frequency of most event data. While some such

data is reported at the annual level (Sarkees and Wayman, 2010), others are more fine-grained, but

rarely get better than daily (Leetaru and Schrodt, 2013). Properly tuned GT can report data at the

hourly level. While this might not be useful for all social scientific enterprises, there are some (such

as protests or financial markets) where hours can be crucially important; in some areas of research,

the availability of higher frequency data might unveil analytical puzzles heretofore unexplored. Sec-

ond, much event data in political science is reported at the national level, and thus lacks geographic

nuance. In many cases, GT allows researchers to access at least the first subnational divisions within

countries. Third and perhaps most importantly, GT overcomes some of the challenges inherent in

more curated big data approaches that rely on the news. The challenges are myriad, including

bias in underlying news sources, choosing which sources to rely on, developing and updating actor

dictionaries, and de-duplicating reporting of events across multiple sources (Grimmer and Stewart,

2013; Leetaru and Schrodt, 2013; Lucas et al., 2015; Schrodt, 2012). These challenges have resulted

in a number of disagreements in empirical work on everything from the extent of reporting bias
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(Weidmann and Ward, 2010; Hollenbach and Pierskalla, 2017; Weidmann, 2016) to the utility of

rules-based approaches over more advanced natural language processing techniques (Schrodt et al.,

2014; Schrodt, 2012). By relying on billions of Google searches and a clear understanding of how

GT indexes, GT side-steps many of these problems and offers the possibility to detect all manner

of events that individuals around the world care about, including general elections, protests, police

crackdowns, important legal changes, etc.

Below we focus specifically on identifying and forecasting protests using GT. There are two

reasons for this choice. First, there is a lot of ground-truthed data on protest events, which aids

with the development of models for event detection and forecasting (Fisher et al., 2019). Second,

a large body of work has explored the predictors of protest, instability and civil violence using in-

sample and out-of-sample forecasting (Fearon and Laitin, 2003; Gurr and Lichbach, 1986; Bowlsby

et al., 2019; Goldstone et al., 2010; Chenoweth and Ulfelder, 2017; Hegre et al., 2013; Cederman and

Weidmann, 2017; Ward et al., 2010). These works use different structural and micro-level predictors

to issue forecasts, but the predictive power of these variables inevitably varies over time. A strong

predictor in 1980 may not be a strong predictor today (Bowlsby et al., 2019). One advantage of

using data from GT is parsimony. Accurately predicting protest outbreaks using intensity and

variation in search interest over time for only one keyword simplifies the model substantially and,

most importantly, should be consistent across time (Bowlsby et al., 2019). It also circumvents

challenges inherent in text-based approaches using other sources of big data, such as Twitter, to

predict protest outbreaks (Korolov et al., 2016; Bahrami et al., 2018). Despite recent progress,

tweets remain especially difficult for machines to filter and classify (Zhou et al., 2015). Given its

ubiquity and often superior geolocalization,14 Google search data might also offer more advance

notice of impending events than Twitter, which has proven fairly accurate at forecasting a day or

14Since most Twitter users do not share their exact coordinates, researchers are forced to use self-reported location,
which users often fail to update.
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two ahead of protests. All told, our focus on temporal variation in a single search term on GT

approach is more parsimonious than current models.

Lastly, while our focus is on event detection and forecasting, there are other creative applications

of GT in political science worth mentioning. One is the ability to survey populations using search

strings that only specific groups of people are likely to use as in Chykina and Crabtree (2018).

Another application involves creating proxies for common, important, but infrequently and/or mis-

reported variables such as unemployment. Gülenay-Chadwick and Şengül (2013), for instance, show

that GT is successful at nowcasting (i.e. predicting present values) of the non-agricultural unem-

ployment rate in Turkey, which is only officially reported at monthly frequency. Finally, GT can

reveal public attitudes without the expense of large sample surveys. Mavragani and Tsagarakis

(2016), for instance, show how search volume on Google can reveal people’s preferences on political

referenda and predict their result. These are a few examples of many potential applications of GT

in political science, and we encourage further research along these lines. Whatever the application,

it is important to approach GT with a clear understanding of how it works, since naive applications

can produce misleading results.

5 The Variance-in-Time Approach to GT data

We propose a ‘variance-in-time’ approach to identifying and forecasting events using GT. The

intuition behind the approach is that an analysis of high frequency, repeated samples of search terms

can both successfully detect politically relevant events, even rare ones, and provide an important

tool for forecasting them. Taking repeated samples of GT data over time allows us to incorporate

variance into the analysis. Given the ‘black box’ nature of GT indexing, focusing on consistency

of interest rather than changes in the GT index itself can better reveal latent interest in an event

(particularly a rare event) before it happens.
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The ‘variance-in-time’ approach consists of downloading GT data for all possible weekly combi-

nations over a given time period. For our purposes, we collect data in 3-month periods, which have

82 full weeks, on average, with overlapping days.15 In the case of Freddie Gray, the riots took place

on April 25, 2015 between approximately 4pm and 10pm. We collect data between March 1 and

May 31. The first week in the sample is March 1 to March 7, the second is March 2 to March 8,

and so on until the last week of May 24 to May 31. As described in a previous section, since data

is collected in weekly windows, GT returns hourly data, so every week contains 168 data points

after taking the mean for each hour.16 After seven days, each hour in the sample has been observed

a total of seven times.17 GT scores can change slightly, substantially or stay the same for each

data point every week, depending on whether the 100-point peak changes or stays the same. Each

3-month collection produces 13,776 data points.18

After collecting the raw weekly data, we first take the mean µ GT index score for each hour

in the sample. Calculating the mean serves to minimize the signal provided by any given ‘100’

score that might result from the combination of low search volume and GT’s requirement that one

hour in a week be indexed to 100.19 We obtain a mean hourly GT index score for a total of 2,160

observations and calculate the standard deviation σ in GT scores in 12 hour intervals. We use

12 hour intervals to maximize granularity while also allowing us to calculate meaningful standard

deviations.20 In the context of GT, 12-hour periods are often long enough to detect meaningful

change –many events see large increases and decreases in interest in windows of 12 hours or less.21

15For instance, July 1-7, 2-8, 3-9, etc. In our application in the next section we collect data for 2 months before
protests and 1 month after them. The time window should be sufficient to establish a baseline for each protest
before interest picks up.

16There are 168 observations per week (24*7) after taking the mean for each hour. Each full week contains 1176 total
data points in the raw data (168*7).

17The first and last week have fewer than seven observations because they fall out of the collection sooner. March 1,
for instance, is only collected once, in the week between March 1 and 7. Thus, March 7 is the first day for which
we have seven observations for each hour. Collection must start somewhere, and this will always happen at the
beginning and end of the full collection interval.

1882 weeks * 168 hours/week.
19If a ‘100’ is a result of noise in any given sample, it is likely to revert to a much smaller number in other samples.
20These intervals go from midnight to noon and noon to midnight every day.
21For instance, once an event is triggered, it only takes a few hours for search interest to skyrocket. Variation in
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Using the GT means per hour and the standard deviation, we then compute the coefficient of the

variation for each hour, i.e. σ/µ.22

The coefficient of the variation helps us incorporate the variance in GT scores into our calcu-

lations and go beyond mean scores, which are inherently noisy when trying to detect rare events

(like protests) in contexts of low search volume. The intuition here is that consistency of interest,

and not just the level of interest, can both indicate as well as forecast an event. Given the nature

of GT indexing, a topic may become more popular without its mean increasing very much, because

another –and unrelated– peak of ‘100’ may be drowning out the increase in the mean for the new

event. Lower variance, on the other hand, will always reveal more consistent interest in a search

topic, which in turn suggests that the topic is becoming more popular even if the mean GT score

does not reflect that. Incorporating the variance helps us paint a fuller picture of search interest.

Definitionally, holding the mean constant, the coefficient of the variation will be smaller when vari-

ation in search interest is low (smaller σ). When variance is high, the coefficient will be larger.

Therefore, we expect a lower coefficient of variation to be associated with a higher probability of

observing a given event –in our case, a protest.

Part of the reason for this expectation lies with the behavior of the mean µ. With a single

sample of GT data, a high GT score can indicates broad interest in a topic, but it can also result

from a small increase in interest in a context of low search interest. Recall that GT always produces

a score of 100 for every collection, as it assigns 100 to the time block that had the highest share of

searches among overall traffic on Google. If one collects data for a week where interest was quite

low throughout, scores are likely to be abnormally high, (say, around 50), because many hours will

interest may have been informative prior to the trigger (our focus in this article) but major changes occur within
just a few hours, often much fewer than 12 hours. This means that 12-hour periods, while relatively short, are
meaningful in the context of GT and allow us to calculate the standard deviation in search interest confidently.
More importantly, they provide granular data that allow us to detect meaningful changes in interest more precisely.
We also run this calculation for 24-hour periods.

22We do not multiply by 100.
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achieve ‘100’ scores even without serious search interest. The hour with the most searches will

receive a score of 100, but with rare events search volume in other hour blocks will be similar. This

means that many hour blocks will receive relatively high GT scores, as they are indexed against

the peak hour. Some will go to zero because no search volume occurred. Thus weeks with little

interest have high GT means, rather than low ones, but most of this variation is a function of many

different low search blocks actually achieving a ‘100’ score. Conversely, when interest becomes more

consistent, the mean will initially decrease. Consistent interest reduces the number of 100-point

peaks driven by low-volume searches and lowers the values of other data points around a true spike.

Hence, the mean will decrease when a search topic begins to garner interest. It will then increase

again when interest is consistent and high, even though there will be fewer peaks of 100.

This fluctuation in the mean creates interesting dynamics in the coefficient of variation. A high

mean will make the coefficient smaller. We expect higher means both in periods with low interest

(noise) and when a rare event is likely to take place (i.e. true high interest), and lower means when

the topic begins to attract attention on GT. Therefore, the coefficient should be largest when the

issue receives very little attention on GT, become smaller as the issue becomes more popular, and

be at its lowest values when attention is at its peak. In other words, the numerator (σ) decreases as

interest increases, and the mean evolves in a u-shape pattern: it is higher with low interest, lower

with increasing interest, and high again with true high-volume interest.

Figure 3 shows this graphically for the case of Freddie Gray. The orange line plots the mean GT

scores for all hours between March 1 and May 31, 2015, as well as the mean and the variance for

each day in the sample (red and black lines).23 The variance starts decreasing substantially around

April 12, the day of Freddie Gray’s arrest. The hourly means follow a similar trajectory, before

they increase again as the protests take place. Note the many cases of 100 point scores, even early

23The daily mean is intended to guide the reader visually. The computation of the coefficient of the variation is done
using the hourly mean (orange line).
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Figure 3: Means and Variance over time in Baltimore, March 1 - May 31, 2015.

in the month before any of the incidents bearing on the Gray protests took place; many of these

high scores reflect GT indexing on a low volume search. There is only one mean peak greater than

70 between April 12 and May 6 (the peak of April 25), but at least six in the month prior to April

12.

Figure 4: Evolution of the coefficient of the variation in Baltimore, March 1 - May 31, 2015.

Figure 4 plots the resulting coefficient of the variation – the standard deviation over the mean.

Points are much farther apart on the left side of the plot before April 12 (day 43). After that,
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points are first closer to one another (lower variance) and then decrease sharply before and during

the protest. Figures 3 and 4 show the potential of the coefficient of variation to detect and forecast

a protest event days before the protest actually takes place. We can detect an event by observing

multiple points in a sequence in which the coefficient of the variation is much lower than the expected

trend (see Figure 4). In terms of forecasting, there are two aspects of Figure 4 that we can exploit:

variance overall decreases after an initial positive shock to variance around April 4. We cannot issue

a reliable forecast based on one event and build a generalizable model from it, but we think there

is sufficient evidence in the Freddy Gray event to suggest that our approach to GT data may yield

accurate forecasts. We develop a generalizable forecasting strategy in the next section.

6 Forecasting Protests in the U.S.

6.1 Data

To systematically test the forecasting capacity of our variance-in-time approach, we apply it to

an expanded sample of 130 protest events and 133 non-events between January 2017 and May

2019 in metro areas in the United States.24 We identify known protest events using data from the

Crowd Counting Consortium (CCC), which tracks all protests in the United States since January

2017.25 To build our sample of known protests, we select all protests in CCC sample larger than

2,000 participants (39 events), take a random sample of 42 events of between 1,000 and 2,000

participants, and another random sample of 48 small protests between 1 and 100 protesters. The

130 protest sample is thus well-balanced in terms of protest size.26 The largest protest event has

24There are 130 unique metro areas in the sample.
25https://sites.google.com/view/crowdcountingconsortium/home.
26We selected protests of varying sizes to ensure that there was variety in the sample regarding the potential level of

attention that a protest received. The numbers are uneven across sample groups because: 1. there were only 39
protest events with more than 2,000 participants; and 2. some metro areas in the CCC data are not reported in
GT. For instance, the CCC identified a protest in Salem, Oregon, but GT does not report data for the city of Salem
and its metro area. We have not been able to include these protests in the sample.
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an estimated count of 60,000 participants and the smallest has 1.27

We construct a synthetic control group by first taking a random sample of metro areas and

dates from the CCC data for which we know a protest did not take place for a period of 3 months.

We select 130 periods randomly and, within the 3 months for each period, we create a false protest

date at day 60, i.e. two months in. Since no protest occurred on day 60 or within the third month,

we expect the coefficient of the variation to fail to predict these protests.

We then apply our variance-in-time approach to each of the 263 protest and control ‘events’

in the sample. We collect data from GT for a period of 3 months –2 months prior to the event

and 1 month after it. For example, for a protest that takes place in ‘Austin, TX’ on ‘9/1/2018’,

we request weekly data for the Austin metro area (code US-TX-635) from July 1 until September

30, 2018.28 The search term used in all collections is ‘protest’. The raw data consists of 3.623

million observations.29 After calculating the mean for each hour, the sample contains 568,080 total

observations. The unit of observation is the city-hour. There are a total of 280,800 observations

for protest events and 287,280 for non-events. Lastly, note that protests are a rare event, as they

account for only 1.11 percent of the data.

We apply (1) a statistical model to perform in-sample prediction with our full dataset and (2) a

forecasting model using logistic regression and K-fold cross-validation for out-of-sample prediction

on aggregated data.30

6.2 In-Sample Results

First, we fit a generalized linear model using the full sample of 568,080 observations with a set of

lagged values of the coefficient of variation as the main predictors. We also add metro-area fixed

27Estimates by the CCC. Only 2 protests have a size of 1 and that’s the result of random sampling of protests under
100 participants. A list of all protests included in the sample, with participant estimates and their claims, is included
in the Appendix.

28Again, protests do not overlap within periods. For the forecasts we use data only from the first two months.
29168 hours/week * 82 unique weeks * 263 events = 3.623M.
30The results from the models in table format are reported in the Appendix.
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effects. The coefficient of variation is lagged up to five hours before the protest event and then daily

until 7 days before the protest date. Protest is dichotomous: days with protests are set to 1, and

days without protests to 0.31 The results are identical using a linear probability model – the sample

size is so large that logistic regression coefficients remain largely unbiased even in the presence of a

large number of parameters (Beck, 2020).

Figure 5: Effect of the coefficient of the variation in GT scores on protest.

Figure 5 shows the predicted probabilities for protest and no protest groups based on the logistic

model.32 We refer to the protest subset as ‘positive’ and the synthetic control as ‘negative’. The

x-axis are days and the predicted probabilities of protest are on the y-axis. All protests in the

sample are set to take place on day 60. The results are computed using the full model, not a split

sample.33

The contrast between the predictions for our true protest sample and the synthetic control is

31This applies to all 24 hours, since we cannot know exactly at what time the protest started.
32As for statistical significance, lags of 5 and 7 days are especially significant along with more immediate lags of up

to 24 hours.
33They are the averages of the predictions for the two groups from the complete model.
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striking. The model places the highest probability of protest in the positive group at the day of the

protest. The probability of a protest is 7 percent higher in cities where a protest occurred in the

data than in our control group, a statistically significant difference. Moreover, as Figure 5 shows,

the probability curves for these two groups begin to diverge much earlier. Significant differences

can be observed one and two weeks before the day of the protest. This creates an opportunity

for predicting protests further ahead than current models (Bahrami et al., 2018). On the other

hand, the probability of protest for the control group is mostly flat for the entire period. It is also

indistinguishable from the treatment group’s probability of protest between one and two months

prior to the protest date.

6.3 Out-of-Sample Results

We apply a logistic regression classifier and use K-fold cross-validation to produce out-of-sample

forecasts. We follow the literature in the selection of the model (Korolov et al., 2016; Bahrami

et al., 2018).34 The output of the logistic regression is the probability that a protest takes place in

a metro area in a given time period. The classifier transforms the probability for each protest event

into a binary value. We allow the algorithm to select a cutoff point to perform the conversion. The

model assigns a 1 if the predicted probability is above the cutoff point and a 0 otherwise. Thus the

model’s output is a dichotomous variable that indicates whether a protest is predicted or not.

We use K-fold cross-validation to perform out-of sample forecasts setting the number of folds

at 10.35 K-fold cross-validation divides the sample into ten random splits, keeping nine as training

data and one as test data. For each unique group, we fit a model on the training data and evaluate

it on the test set. We obtain a set of ten different results, which we use to summarize the skill of the

34Results obtain using other classifiers, such as linear regression and random forest.
35We select k=10, a common choice in applied machine learning, as it is has been ”shown empirically to yield test

error rate estimates that suffer neither from excessively high bias nor from very high variance” (James et al., 2013).
The model shows similar results using a wider range of k-values.

21



model. This procedure is particularly useful to test the skill of our model considering the relatively

small sample size of protests. Recall that our final dataset for the forecasting model consists of 263

observations –130 protest events and 133 null events. A simple train/test split, in which we split the

sample into training and test sets only once, generally yields more biased and optimistic estimates

of model fit, a problem that is exacerbated in smaller samples (see Brownlee, 2018).

Our models test the predictive capacity of the coefficient of the variation on protest. The first

model uses the maximum and minimum values of the coefficient of the variation between 1 and

3 weeks prior to the protest. These variables are aggregated at the protest level. For instance,

if a protest took place on June 1, we would calculate the maximum and minimum values of the

coefficient of the variation between May 7 and May 24. This effectively lags our prediction one full

week (our previous in-sample model indicates this is highly predictive of a forthcoming protest).

This lag shows that our model can forecast protests further in advance than current work, which

usually issue three-, two- and one-day forecasts (Korolov et al., 2016; Bahrami et al., 2018). In

the model, we also include the maximum and minimum values between 3 and 5 weeks and 5 and 7

weeks prior to the protest.

Figure 6 shows the area under the Receiver Operating Characteristic (ROC) curve for the first

model. The ROC curve illustrates the predictive capacity of a model, showing the trade-off between

true positive and false positive rates as we vary the decision threshold. The area under the ROC

tells us accurately a model classifies true positives. The closer it is to 1, the better the model

performance. Here, Figure 6 provides strong evidence that the coefficient of variation can be highly

predictive of protest events. The area under the ROC score for the main model is 0.92, while

out-of-sample accuracy stands at 0.85, both high scores.36 Using the coefficient of variation, we

are correctly predicting 85 percent of protests on unseen data. This translates into 110 protests

36In-sample accuracy is 0.87 and the AUC is 0.96.
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Figure 6: Effect of the coefficient of the variation in GT scores on protest.

correctly identified by the model for a recall of 0.88. We fail to predict 13 protests that did take

place. Conversely, we’re identifying 114 true negative events and incorrectly identifying 26 protests

that never happened (false positives).

We build a second model that calculates daily protest probabilities per urban area and predicts

the day when a protest is likely to take place. Our predictors are the coefficient of variation (logged)

lagged from 1 up to 14 days before the protest. Since protest events are rare in the training data

(0.8%), we use gradient boosting (gbm) to circumvent known pitfalls of logistic regression with

highly imbalanced outcome variables (King and Zeng, 2001; Beck, 2020).37 Given rare events,

accuracy scores are not a great tool to evaluate the model as high train and test accuracies are

solely driven by correctly predicted zeroes.38 We thus turn again to area under the ROC scores and

report the confusion matrix, both of which are more instructive of model performance. Model 2 has

a mean AUC score of 0.90, which again provides strong evidence of the power of the coefficient of

37We use the gbm package in R and specify an optimal shrinkage term (learning rate) of 0.2, an interaction depth of
12, and 10,000 decision trees.

38Model 1 aggregates the data at the level of the urban area, leaving only 263 observations. Model 2 uses daily scores
of the CV for each urban area, leaving 15,780 observations (60 days * 263 urban areas).
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Figure 7: Effect of the coefficient of the variation in GT scores on protest.

the variation to predict protest events.

The confusion matrix confirms the strength of the model. A confusion matrix compares the

predicted values of an outcome from a model versus the actual values in the data. We look for (1) a

high number of matches between predicted true positives and actual true positives, and (2) a high

number of matches between predicted true negatives and actual true negatives in the data. Over

10 folds,39, which means that we need to sample on urban area and we cannot use independent

observations for our folds. the model correctly predicts an average of 23.6 protest days in the test

data and only fails to predict 6.4 known protest events (false negatives). 78.4 percent of protests

are thus correctly identified, as are all non-protest observations. Moreover, the model produces no

false positives on average, leaving an F1 score of 0.88. These results using gbm are especially strong

considering how rare protest events are in the second dataset (130 out of 15,780 observations). The

gbm model greatly improves on the performance of the logistic regression classifier, which does no

better than random chance.

39Folds are custom-made to sample by urban area rather than by observation. We are predicting protest in a given
day and urban area using lagged independent variables
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These findings show that the coefficient of variation can predict protest from GT data earlier

than current models. For reference, we use innovative work by Bahrami et al. (2018) that leverages

Twitter data to forecast protest events. The authors collected tweets between November 9 and 16,

2016 with hashtags related to protests against Donald Trump’s election and used machine learning

to forecast when a protest was likely to take place. Their model predicts protests perfectly for

November 15 and 16, dates in which protest events were common throughout the United States.

Three days prior to these major events, however, their model issues protest probabilities around

coin-toss levels. Our model manages to issue much more accurate forecasts up to a week in advance,

leveraging small but detectable changes in Google search activity.

7 Conclusion

In this paper we have (1) explained how GT data is generated and why its characteristics make

it a difficult tool to use; (2) showed how variation in GT results for search terms (and especially

low-volume search terms) in repeated samples can be used to detect events like protests; and (3)

tested the efficacy of our approach to forecast protests in metro areas in the United States. We

also provide practical advice on the appropriate time frame for searches and what to look for in the

coefficient of variation. Ultimately, any use of GT for research purposes will require some tailoring

for the specific research question at hand, but we believe GT offers enormous potential for further

work in the social sciences. It is an easily available tool that aggregates information about the

everyday curiosities of many, many people across the world that is encoded in billions of their daily

searches. To the extent those searches bear on difficult-to-study and rare, but pressing, events, we

encourage others to explore GT as a source for truly big, promising data.

While our specific application is to “protest” searches in the U.S., it is worth considering the

broader set of events that GT might prove useful for researching. First, by exploiting GT’s dis-
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tinctive indexing, our approach is only likely to be useful for events that have relatively low search

volume in normal times. Thus, searches for ‘deportation’ and ‘MS 13’ are promising because they

might provide insight into locally salient, but infrequent, events like ICE raids or a gang offensive.

On the other hand, high-volume searches have fewer spikes and few ‘0’s to exploit. We suspect one

could develop a GT-based approach to detecting events even for high-volume search terms, but our

approach would not help. Second, our efforts suggest that as one increases the number of words in

a search and/or introduce different search terms for the same concept, results can vary a lot. Thus,

GT is its most powerful when users share a common, simple search language.

Finally, our work with GT points to two important paths for future research. First, the re-

search community has devoted enormous resources to the coding of event data. In some cases (as

with ACLED), that involves a large number of human coders reading and classifying an enormous

amount of news, policy reports, etc. In other cases, as with ACLED and ICEWS, machines code

digital media according to rule-based approaches to natural language processing. Both approaches

have generated enormous bodies of research and important advances in knowledge. GT relies on

a different source of data–user searches–but could provide insight into at least some those same

events. An explicit comparison of these different approaches would help clarify the strength and

limitations of each. Second, the promises of GT extend beyond event data. As discussed earlier

in the paper, there are important applications that involve creating proxies for important, but in-

frequently reported, misreported, or expensive-to-gather measures. Examples span the gamut from

nowcasting intermittently reported unemployment to learning the incidence of political opinions in

a population without the cost of running sample surveys. The wide range of potential applications

underscores how useful GT can be when researchers approach it with a detailed understanding of

how it works.
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Barberá, P., J. T. Jost, J. Nagler, J. A. Tucker, and R. Bonneau (2015). Tweeting from left to right:
Is online political communication more than an echo chamber? Psychological science 26 (10),
1531–1542.

Beck, N. (2020). Estimating grouped data models with a binary-dependent variable and fixed
effects via a logit versus a linear probability model: The impact of dropped units. Political
Analysis 28 (1), 139–145.

Boschee, E., J. Lautenschlager, S. O’Brien, S. Shellman, J. Starz, and M. Ward (2015). Icews coded
event data. Harvard Dataverse 12.

Bowlsby, D., E. Chenoweth, C. Hendrix, and J. D. Moyer (2019). The future is a moving target:
Predicting political instability. British Journal of Political Science, 1–13.

Brecher, M., J. Wilkenfeld, K. Beardsley, P. James, and D. Quinn (2016). International crisis
behavior data codebook, version 11. URL: http://sites. duke. edu/icbdata/data-collections.

Brigo, F., S. C. Igwe, H. Ausserer, R. Nardone, F. Tezzon, L. G. Bongiovanni, and E. Trinka (2014).
Why do people google epilepsy?: An infodemiological study of online behavior for epilepsy-related
search terms. Epilepsy & behavior 31, 67–70.

27



Brownlee, J. (2018). Statistical Methods for Machine Learning: Discover how to Transform Data
into Knowledge with Python. Machine Learning Mastery.

Carneiro, H. A. and E. Mylonakis (2009). Google trends: a web-based tool for real-time surveillance
of disease outbreaks. Clinical infectious diseases 49 (10), 1557–1564.
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